

Online upgrade of replication clusters without downtime

Hayato Kuroda Vigneshwaran C

Speaker's profile

- Hayato Kuroda
 - Living in Japan
 - Working at Fujitsu

- Vigneshwaran C
 - Living in India
 - Working at Fujitsu Consulting India
 - Recognized contributor

Agenda

Introduction

Upgrading streaming replication clusters
Converting streaming clusters to logical ones
Upgrading logical replication clusters

Part 1 – Introduction

Introduction – what is upgrade?

- to improve the quality or usefulness of something, ... Cambridge Dictionary
- In PostgreSQL, it means to use newer executables in your system
- Every major version adds a lot of features, tools, etc.
- Major releases of PostgreSQL cannot understand old data directory
 - System catalog may be changed
 - WAL format may be changed
 - etc.
- PostgreSQL community releases a new major version every year, but supports only for five years

pg_upgrade - the way to upgrade your instance

- The *built-in* upgrade tool
- 7x faster than normal dump and restore
- Avoids reading data by SQL commands
- Assumptions of this tool
 - System catalogs are changed for every releases
 - Table file format is preserved

pg_upgrade - weaknesses

- Requires the instance to be stopped
- Replication slot cannot be migrated, for PG16 and earlier
- Breaks the streaming replication cluster
 - Streaming replication requires major version of instances are the same

What should we do?

Use logical replication

Understanding Replication in PostgreSQL

TITSU

	Streaming replication	Logical replication
Naming of instances	Primary/Standby	Publisher/Subscriber
What content do they send	Exact WAL records	Replication messages, extracted information from WAL
Who initially synchronizes data	pg_basebackup	Done automatically
Replication target	Whole of DB cluster	Per database
What downstream can do	Read-only queries	Both read and write queries
Environments	OS and major versions must be same	Can be different

Backup purpose Primary/standby becomes same state

Backup and Other purposes

Nodes can be different state

2/2

Logical replication - Usage

• The publication must be defined on an upstream node.

postgres=# <mark>CREATE PUBLICATION</mark>								
<pre>postgres=# SELECT * FROM pg_publication; oid pubname pubowner puballtables pubinsert pubupdate pubdelete pubtruncate pubviaroot</pre>								
16396 (1 row)	pub	10	t	+ t	+	+ t		+

• Then a downstream node subscription subscribes to the publication.

postgres=# CREATE SUBSCRIPTION sub CONNECTION 'user=postgres dbname=postgres port=5431' PUBLICATION pub; NOTICE: created replication slot "sub" on publisher							
CREATE SUBSCRIPTION							
<pre>postgres=# SELECT oid, subdbid, subname, subconninfo FROM pg_subscription;</pre>							
oid subdbid subname subconninfo							
16402 5 sub user=postgres dbname=postgres port=5431 (1 row)							

Logical replication - Replication slots

- Provides a way to **ensure the instance does not remove WAL files**
- Two types:
 - streaming replication slot
 - logical replication slot
- Logical slots contain an "output plugin", used by logical decoding

Part 2 - Upgrading streaming replication clusters

Challenges of upgrading replication clusters

FUJITSU

- Major releases can change the layout of the system catalogs (addition of columns, changed column type, etc).
- Major releases can change WAL records (addition of new WAL record, modification of WAL record, etc)
- Data files cannot be used by the upgraded instance
- Streaming replication clusters does not work after one of the instances is upgraded

Why use Logical replication for upgrades?

FUJITSU

- Logical replication works across major versions, so even if one of the instances (Publisher or Subscriber) is upgraded, logical replication can continue
- WAL format changes do not affect logical replication
- Continues to identify and replicate changes even after the upgrade
- It helps in reducing the downtime

- We want to upgrade the cluster from PG12 to PG16
- Let's say primary is in node1 and standby is in node2
- Any concurrent activities are allowed, as much as possible
- Make sure wal_level = logical in primary

IIITSU

The problems with PG16 upgrade

- The logical replication slots must be re-created
- The replication slot LSN should be adjusted
- The subscription-related information will not be preserved
 - The subscriptions should be dropped
 - The table data should be truncated
 - The subscriptions should be re-created, depending on the data size
- This process is complex and can be time-consuming

Part 3 – Converting streaming clusters to logical ones

Motivation

Fujitsu-Public

Difficulties preparing the new Subscriber

• Takes a long time

- Initial synchronization runs COPY command, per table
- Estimated execution time is proportional to the number of tables

• Requires additional disk resources

- Replication slots will be created while copying data
- Generated WAL files are preserved
- They may fill up disk PANIC!

pg_createsubscriber – a new tool in PG17

• Converts physical standby into logical Subscriber

- Confirms the standby is caught up at the certain point,
- Then defines subscriptions on the standby
- How? introduces a **new server application**
 - Must be executed on the standby server

• Pushed on HEAD!

300

250

200

150

100

50

0

Execution time [s]

pg_createsubscriber - performance comparison

- Compares the elapsed time while synchronizing 10 tables
 - Logical replication: elapsed time from CREATE SUBSCRIPTION to end of synchronization
 - pg_createsubscriber: command execution time

```
●系列1 ●系列2
1 2 3 4 5
Data size of each tables
```

```
wal_level = logical
shared_buffers = 40GB
max_worker_processes = 32
max_parallel_maintenance_workers = 24
max_parallel_workers = 32
synchronous_commit = off
checkpoint_timeout = 1d
max_wal_size = 24GB
min_wal_size = 15GB
autovacuum = off
```

\$ cat /proc/meminfo | grep MemTotal MemTotal: 792237412 kB \$ grep processor /proc/cpuinfo | wc -1 120

pg_createsubscriber - how it works

pg_createsubscriber - how it works

(Fujitsu-Public)

Part 4 – Upgrading logical replication clusters

Upgrading logical replication clusters (PG16)

Upgrading logical replication clusters (PG16)

New features added in PostgreSQL 17

- Logical replication slots are migrated:
 - Logical replication slot information will be copied from the old cluster
 - After the upgrade, just the subscription connection strings should be updated to point to the updated Publisher instance
 - Logical replication can continue seamlessly

- Subscription-related information is preserved:
 - Previously, only the subscription metadata information was preserved
 - Without the list of relations and their state, it's impossible to re-enable the subscriptions without missing some records
 - Now the pg_subscription_rel information will be preserved
 - Now replication origin will be preserved

Upgrading logical replication clusters (PG17)

Upgrading logical replication clusters (PG17)

- Upgrading replication clusters had many challenges
- Some features have been committed:
 - Preserving logical replication slots information during upgrade
 - Preserving subscription information during upgrade
 - **pg_createsubscriber,** which converts the streaming replication cluster to a logical replication cluster
- Together, these features remove most downtime while upgrading the streaming replication cluster
- Logical replication clusters can be upgraded now without the need to copy the table data again

- <u>https://www.postgresql.org/docs/16/pgupgrade.html</u>
- <u>https://www.postgresql.org/docs/current/protocol-replication.html</u>
- <u>https://www.postgresql.org/docs/current/logical-replication.htm</u>
- You can send any questions to:
 - kuroda.hayato@fujitsu.com

Thank you

Online upgrade of replication clusters without downtime

Hayato Kuroda Vigneshwaran C